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ABSTRACT OF THESIS 

CARDIAC EFFECTS OF OBESITY DURING 
PREGNANCY IN C57BL/6J MICE 

Objective: Pregnancy requires profound cardiac and metabolic adaptation. Left 

ventricular (LV) mass is increased in response to pregnancy, but is not associated with 

cardiac damage. In contrast, obesity-mediated cardiac hypertrophy is pathological. Data 

from animal studies indicate dietary fatty acid composition may have a protective effect 

during states of extreme cardiac physiological adaptation. In contrast, aberrant cardiac 

metabolism is a hallmark of disease. Over a third of reproductive-age women in the 

United States are obese, but there is a paucity of data describing the effect of obesity on 

maternal cardiac adaptation to pregnancy. The objective of this study was to determine 

the effects of high-fat feeding during pregnancy on cardiac hypertrophy and metabolism 

in a mouse model of diet-induced obesity. 

Methods/Results: Female C57BL/6J mice (8 weeks old) were fed a high fat (HF; 

60% kcal from fat) or a control low fat (LF; 10% kcal from fat) diet for 8 weeks, then 

were either crossed with male mice to become pregnant (P) or remained non-pregnant 

(NP) controls. At gestational day 18, cardiac function was quantified by 

echocardiography in LF- and HF-fed P and NP females. On gestational 19 day, mice 

were euthanized for tissue collection. HF-fed females had significantly increased body 

weight compared to LF-fed controls, and body weight was increased in P compared to 

NP mice. In response to pregnancy, LF-, but not HF-fed, mice had significantly increased 

LV mass (P<0.01). In contrast, HF-fed pregnant mice had increased relative wall 

thickness (RWT: [2* LV posterior wall thickness/LV end-diastolic diameter]) compared 

to LF-fed pregnant mice. We quantified mRNA abundance of genes regulating fatty acid 

oxidation utilization in left ventricles of LF- and HF-fed pregnant and non-pregnant mice 

using Nanostring nCounter Analysis system. Acaa2, Acox1,and Acadl (genes regulated 

long-chain fatty acid oxidation) and Cpt1b (regulating fatty acid transport into the 

mitochondria) were upregulated with both HF-feeding and pregnancy. In contrast, 
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Ehhadh, a gene regulating production of medium chain fatty acids during fatty acid 

oxidation, was increased in pregnant mice, but only in the LF mice, and the expression 

was significantly reduced in HF- compared to LF-fed pregnant mice. 

Conclusions: Physiological cardiac hypertrophy in response to pregnancy was 

observed in LF-fed, but not HF-fed mice. In contrast, HF-fed pregnant mice had 

increased RWT compared to LF-fed pregnant mice. While fatty acid utilization was 

increased with HF-feeding and pregnancy, the expression of Ehhadh was reduced in HF- 

compared to LF-fed mice. Medium chain fatty acids are demonstrated in the literature to 

be protective against pathological cardiac remodeling in experimental animals. Taken 

together, these data suggest obesity may impair protective fatty acid utilization pathways 

in pregnancy to promote adverse cardiac remodeling.  
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CHAPTER 1. INTRODUCTION 

1.1 Background 

 Increasing evidence suggests that pregnancy is a sensitive window where adverse 

effects on cardiovascular function may permanently alter maternal risk for cardiovascular 

diseases (CVD) 2. Epidemiology studies demonstrate that women with a history of 

pregnancy complications, such as gestational hypertension or diabetes, preterm delivery, 

or intrauterine growth restriction are at greater risk for mortality from CVD 3. Rodent 

studies support that the profound cardiovascular adaptations during pregnancy may serve 

as a type of “stress test”, to unmask cardiovascular vulnerabilities 4. These data suggest 

pregnancy complications are a sex-specific risk factor for CVD. Obesity is strongly 

associated with pregnancy complications, with a nearly stepwise increase in the incidence 

of preterm birth, gestational diabetes, hypertensive disorders, and other high-risk 

conditions with increasing category of body mass index (BMI) 5. This is concerning as 

the prevalence of both obesity and CVD are rising in women of reproductive age in the 

United States 6.  

Pregnancy induces many structural and functional changes in the cardiovascular 

system to accommodate the growing uteroplacental unit. One such change is cardiac 

hypertrophy, or enlargement of the heart in response to increased metabolic demands. 

Cardiac hypertrophy with pregnancy is assumed to be transient, and is not associated with 

cardiac damage 7. In contrast, cardiac hypertrophy occurring in response to obesity is 

pathological, and a prognostic indicator for CVD 8. Despite the known associations 

between obesity, pregnancy complications, and maternal CVD, there is limited research 
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describing how obesity modulates cardiac hypertrophy of pregnancy. This is important, 

as adverse cardiac effects during pregnancy may drive future maternal risk for CVD.  

1.2 Problem Statement 

Women with a history of obesity-mediated pregnancy complications are at a 

greater risk of CVD. However, mechanisms linking pregnancy complications and CVD 

are unknown. Both obesity and pregnancy independently promote cardiac hypertrophy 

and are associated with changes in cardiac metabolism. It is not known how obesity 

during pregnancy modulates cardiac hypertrophy and energy metabolism. 

1.3 Overall hypothesis 

The overall hypothesis of this research project is that obesity during pregnancy 

promotes adverse cardiac remodeling associated with altered cardiac metabolism. 

1.4 Research Questions 

1. Does obesity promote altered cardiac hypertrophy during pregnancy in mice? 

2. What is the effect of obesity during pregnancy on the expression of genes that 

regulate cardiac metabolism in mice?  

1.5 Impact 

If a woman is going to make a lifestyle change, she is more likely to do so while 

pregnant. This is a crucial time when healthcare professionals need evidence-based 
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nutritional strategies that can be tailored to accommodate individual nutritional needs and 

provide sustainable modifications. By providing individualized, sustainable nutritional 

therapies, women may reduce their risk or progression of obesity-mediated pregnancy 

complications and/or CVD. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Cardiac physiology of pregnancy 

Pregnancy is a dynamic process, requiring immense physiological adaptation of 

the cardiovascular system. This includes changes in blood volume, heart function, and 

changes in properties and function of blood vessels. These changes are necessary for 

accommodating the growing fetoplacental unit, and to meet the increased metabolic 

demands of the mother. Insufficient ability of the mother’s body to adapt to these 

cardiovascular changes can adversely affect the health of both the mother and the fetus. 

In fact, the cardiovascular demands of pregnancy can sometimes reveal otherwise silent 

cardiovascular pathologies. This is why pregnancy is often referred to as “nature’s stress 

test” 2.  

2.1.1 Hemodynamics (the flow of blood through the vessels and organs in the body) 

One of the biggest changes during pregnancy is the increase in blood volume. 

Blood volume increases early in the first trimester, and steadily increases throughout 

gestation. The total increase in blood volume varies widely, between 20% to an 

astonishing 100% of pre-pregnancy volume, usually approximated to be about a 45% 

increase 7. The vascular system accommodates this via vasodilation (widening of vessels) 

and an overall decrease of about 35% to 40% in systemic vascular resistance (resistance 

of vessels to blood flow). Vascular resistance is lowest in the first trimester, 

accommodating development of the placenta, followed by a slight increase in the end of 

the second trimester, and remains steady for the remainder of pregnancy. Blood pressure 
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decreases accordingly, being the lowest in the first trimester, then returning to near pre-

pregnancy levels by the third trimester 7.  

The increase in blood volume translates to increased stroke volume (the volume 

of blood pumped through the heart with each beat). Accordingly, cardiac output (the 

volume of blood pumped through the heart each minute) also increases up to 45% during 

pregnancy, where cardiac output is determined by multiplying the stroke volume by the 

heart rate. In summary, Cardiac output is increased by an astounding 30-50%, and 

peripheral vascular resistance and blood pressure decrease by roughly 20% during 

pregnancy7.   

2.1.2 Cardiac morphology (size, shape, and geometry) 

Cardiac morphology is significantly altered during pregnancy. Cardiac 

morphology can be assessed via echocardiography,a noninvasive technique that uses 

ultrasound waves to make images of the heart. Pregnancy is well known to cause cardiac 

hypertrophy, an enlargement of the heart and ventricles, in response to metabolic 

demands, including increased blood volume. Cardiac hypertrophy is represented by the 

mass of the left ventricle (LV). LV mass is estimated to increase by about 40% by the 

third trimester of pregnancy 7. The physiological cardiac hypertrophy of pregnancy is 

associated with changes in shape and geometry, as well, collectively termed cardiac 

remodeling. Characterization of cardiac remodeling in pregnancy is not very well 

defined. A recent study in humans reported increased chamber size with wall thinning, 

termed “eccentric” remodeling 9. Changes in cardiac remodeling during pregnancy are of 

interest, as adverse remodeling can be a prognostic indicator of future CVD. This will be 

discussed further below. 
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2.1.3 Reverse Adaptation 

Literature in humans suggests cardiac changes during pregnancy return to pre-

pregnancy values, within a year 7. However, these studies are historical, and few studies 

have characterized cardiac function and structure postpartum using modern technology. 

Studies in healthy animals suggest that hemodynamics and cardiac morphology return to 

pre-pregnancy values about 7 days postpartum 10. However, recent rodent studies 

demonstrate that factors such as age and health status (i.e. obesity) may be detrimental to 

reverse cardiac adaptation postpartum 1112. This is important, as a growing body of 

literature suggests that factors impacting cardiovascular function during pregnancy have 

a lasting impact on maternal cardiovascular function. 

2.2 Epidemiology of pregnancy history and maternal heart health 

2.2.1 Sex differences in CVD 

 Cardiovascular disease is the number one cause of death in both men and women 

in the United States, but the disease manifests differently in women compared to men 13.  

For example, women are more likely to develop certain types of heart disease, such as 

stroke, left ventricular (LV) diastolic dysfunction, and heart failure with preserved 

ejection fraction (HFpEF) 14. Women also have a more steeply increasing risk with age 

compared to men 6. Only in the last decade have mechanisms contributing to sex 

differences in CVD become a major research focus. Contributing to the lack of 

understanding of CVD in women is the fact that females have traditionally been 

marginalized in human and animal studies 15. 
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Recent studies defining the role of sex hormones on cardiovascular function have 

contributed to significant advancements in explaining sex differences in type, timing, and 

mortality of CVD13. Research examining sex disparities between men and women in 

terms of pathology and physiology has revealed that women are more likely to 

experience endothelial and microvascular dysfunctions related to coronary artery disease 

compared to men 16. These differences might be attributed to estrogen, which is reported 

to have protective effects on vascular and endothelial function, as well as metabolism 

and adiposity 17. However, discrepancies exist in findings from randomized-controlled 

trials designed to test protective effects of female sex hormones against CVDs18. In the 

Women’s Health Initiative (WHI), hormone replacement therapy in postmenopausal 

women actually contributed to increased risk for CVD in some women 19, suggesting that 

sex hormones alone cannot be solely responsible for protective effects against CVD in 

women. In addition to sex hormones, sex chromosome compliment also contributes to 

development of CVD, such as aneurysms 13. These findings indicate that other sex-

specific factors also contribute to differential cardiovascular function between males and 

females. The experience of pregnancy is one of the most profound physiological 

differences between males and females, requiring extensive cardiovascular adaptation.  

To improve heart health in women, it is essential to define how cardiovascular 

stress during pregnancy affects future maternal cardiovascular function. 

2.2.2 Pregnancy complications are associated with maternal risk for CVD 

Pregnancy complications, such as gestational hypertension or diabetes, preterm 

delivery, or intrauterine growth restriction (IUGR) are associated with mortality from 

cardiovascular disease (CVD) 3. Results from several large cohort studies demonstrate 
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that women with a history of gestational hypertension and related conditions, such as 

preeclampsia, have an increased risk for developing CVDs like hypertension, ischemic 

heart disease, stroke, and death due to CVD even decades after delivery 20.  As a group, 

complicated pregnancies are characterized by inflammation, vascular dysfunction, 

thrombosis, and insulin resistance; physiologic pathways which are common to CVD. 

These data suggest that adverse physiology of a woman’s reproductive history may serve 

as a predictor for chronic disease (see Figure 1) 2. It is not clear whether pregnancy is a 

“stress test” that reveals latent cardiovascular abnormalities, or if adverse effects on the 

cardiovascular system during pregnancy can permanently alter the trajectory of maternal 

heart health (or both). 

2.3 Obesity and pregnancy complications 

Obesity is the most common medical condition during pregnancy that affects 

maternal and fetal health 5.  According to the CDC, the prevalence of obesity in the 

United States is increasing in women of reproductive age, with approximately 55% of 

women aged 20-39 years old having a body mass index (BMI) of greater than 25, and 

approximately 31% having a BMI over 30 21.  Maternal obesity has both short-term and 

long-term health consequences for mother and offspring.  Obesity during pregnancy is 

associated with fertility problems, metabolic derangements, hypertensive disorders (such 

as preeclampsia), premature delivery, cesarean delivery, impaired fetal growth or 

macrosomia, and stillbirth 22.   
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Epidemiological data worldwide has linked maternal obesity to increased risk for 

metabolic and cardiovascular disease in offspring 23.  However, mechanisms directly 

linking maternal obesity to subsequent cardiovascular disease are not known. 

2.4 Cardiac effects of obesity  

2.4.1 Obesity augments traditional risk factors 

It is well established that obesity augments cardiovascular risk factors, such as 

blood pressure, blood lipid levels, and the development of metabolic syndrome.  In men 

and women, obesity is a primary contributor to the development of hypertension 24. High 

blood pressure is a significant predictor for CV events 25.  While the overall worldwide 

prevalence of hypertension is greater in men, with increasing age (and menopause), the 

incidence of hypertension in women rises 6. Given that the prevalence of obesity is 

greater in women (at all ages) 21, the overall burden of obesity-associated hypertension 

may actually be greater in women than men. 

Obesity contributes to dyslipidemia by increasing blood triglyceride and Free 

Fatty Acids (FFA) levels 26. Consequences of this include perturbed lipoprotein 

metabolism, causing the formation of atherogenic lipoprotein particles, as well as free 

fatty acid-mediated insulin resistance 27. Dyslipidemia increases the risk for CVD, such 

as atherosclerosis and coronary heart disease 28. 

Excess adipose tissue with obesity, especially visceral or abdominal adipose 

stores, also indirectly contributes to increased cardiovascular risk through release of 

inflammatory mediators. Adipose tissue secretes a number of adipokines that contribute 

to immune function and metabolism, and a pathological consequence of excess adipose 
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mass is increased secretion of adipokines and other pro-inflammatory factors, such as 

TNF-a, IL-6, and MCP-1 29. These factors can have diverse adverse effects including 

impaired endothelial function and increased insulin resistance 30. 

2.4.2 Obesity is an independent risk factor for CVD 

In addition to augmenting cardiovascular risk factors, such as hypertension and 

type 2 diabetes, obesity is an independent risk factor for cardiovascular disease 31.  

Obesity is associated with global longitudinal strain, and both impaired systolic and 

diastolic function 32.  In response to increased blood volume and stroke volume (SV), 

mean arterial pressure and ventricular filling pressures can become elevated 33 34.  

Obesity and excess adiposity are directly associated with cardiac hypertrophy and 

remodeling 35, and geometric changes are further augmented with increasing blood 

pressure 36.  Interestingly, although absolute LV mass is greater in men, when normalized 

for body size, the effect of obesity to increase LV mass is reported to be greater in 

women versus men 37.  Further, a direct association is reported between LV mass and 

body fat percentage, especially visceral adipose tissue 38.  The proportion of body fat is 

generally greater in women compared to men.  Taken together, these data suggest that 

women may be particularly susceptible to obesity-mediated alterations in cardiac 

morphology. 

2.4.3 Cardiac effects of obesity during pregnancy 

It is fairly well-documented that obese women have increased blood pressure 

compared to non-obese women during pregnancy 39 40. Further, obesity is a risk factor for 

hypertensive disorders of pregnancy, such as preeclampsia 41. What is less clear is the 

direct effect of obesity on cardiac structure and function during pregnancy, as well as, the 
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long-term implications.  In a study comparing obese versus non-obese women at 36 

weeks gestation, blood pressure and LV mass were increased with obesity, but no 

differences were observed with respect to CO or ventricular function 40.  In contrast, a 

serial study over trimesters in 16 obese and 17 non-obese pregnancies reported 

differences in SV and contractility in obese women 42.  Interestingly, the difference was 

most striking with respect to the change in function throughout gestation.  SV was 

greater in obese versus non-obese women in the first trimester, however non-obese 

women exhibited an increase in SV and CO throughout gestation, which was not 

observed in obese women.  A similar trend was observed in indices of contractility, with 

some measures of contractility actually decreasing in obese women in the third trimester.  

The authors concluded that obesity was associated with impaired LV contractile 

response.  Using speckle tracking in conjunction with echocardiography, Buddeberg et al 

recently reported diastolic dysfunction and LV global longitudinal strain in obese 

pregnant women at term compared with non-obese controls 43.  These studies provide 

evidence that obesity during pregnancy can adversely modulate cardiac function.  

However, the long-term consequences of these alterations on cardiovascular health are 

not known. 

2.5 Cardiac metabolism 

2.5.1 Overview of cardiac metabolism 

The heart is a biological pump that converts chemical substrates into mechanical 

energy 44. The heart primarily consumes carbohydrates (10-30%) and fats (60-90%) while 

using oxygen to drive oxidative phosphorylation to generate ATP from ADP 45. ATP is 
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then used to drive contractile function (beating), to perfuse the body with blood and 

nutrients. Energy consumption of the human heart is about 10% of whole-body fuel 

consumption. The heart is described as a metabolic omnivore and has incredible 

flexibility to utilize a variety of substrates in the presence of oxygen to generate ATP. 

Energy producing substrates include triacylglycerols, fatty acids, glucose, glycogen, 

lactate, pyruvate, the ketone bodies acetoacetate and β-hydroxybutyrate, and amino acids, 

especially leucine, isoleucine, and valine (branched-chain amino acids) 45 . These 

substrates enter the Krebs cycle primarily as acetyl-CoA, or other intermediates of the 

Kreb’s cycle, for production of reducing equivalents (e.g., NADH and FADH2  are a 

couple), which deliver electrons to the electron-transport chain in the mitochondria. The 

resulting generation of a proton gradient drives the formation of ATP.  In an anerobic 

state, the heart can also utilize lactate (via degradation of glucose) and succinate (via 

degradation of some amino acids). See Figure 2 for schematic of cardiac metabolism.  

 

2.5.2 Altered cardiac metabolism hallmark of disease states 

The heart has the capacity to adapt to an altered metabolic state by selecting 

available substrates for the most effective generation of ATP. This metabolic flexibility is 

lost during heart failure, and pathologic states directly influencing substrate availability 

(e.g. obesity, diabetes) can further contribute to impaired cardiac function 46. It is well-

known that diabetes is associated with increased fatty acid utilization and decreased 

glucose utilization 47. Likewise, obesity results in increased fatty acid utilization and 

reduced glucose oxidation rates 48. This is likely due to substrate availability, as obesity is 

associated with increased levels of circulating fatty acids and triglycerides. Conversely, the 
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reduction in glucose utilization is likely due to the Randle effect, where increased 

utilization of fatty acids has an inhibitory effect on glucose metabolism 47. 

  Changes in substrate metabolism precede changes in function and may be the 

first indication of functional abnormalities. Studies in humans and animals demonstrate 

that prolonged increase in fatty acid utilization results in increased myocardial oxygen 

consumption, i.e. increased oxidative phosphorylation, and reduced cardiac efficiency 49 . 

Despite obesity being associated with an increase in the number of mitochondria, studies 

in ob/ob mice (a genetic mouse model of obesity) reveal that mitochondria from obese 

hearts have deficits in oxidative capacity 50. This dysfunctional condition is called 

oxidative uncoupling, where oxygen consumption is increased, but a proportional 

increase in ATP production is not observed 51. This is a potential mechanism by which 

obesity promotes impaired cardiac function. Increased fatty acid uptake and oxidation 

promote the formation of damaging reactive oxygen species (ROS) from mitochondrial 

complexes, but energy production declines 51. The potential consequence for reduced 

cardiac efficiency is a limitation in cardiac reserve, which may be worsened in the face 

of hemodynamic stressors, such as cardiac hypertrophy and increased blood pressure. 

2.5.3 Cardiac metabolism during pregnancy 

As described above, pregnancy is a form of cardiac stress. Notably, LV mass 

increases by up to 50%, which requires energy. Interestingly, while cardiac work 

increases by 20-30% during pregnancy, cardiac oxygen consumption is only increased by 

approximately 15% 52. Thus, cardiac efficiency is increased during pregnancy. There is 

not much known about cardiac metabolism during pregnancy. Studies from rats indicate a 

progressive decline in glucose utilization, with up to a 70% reduction by late pregnancy 
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53. Studies in dogs demonstrate a large increase in fatty acid oxidation, indicating that the 

ATP production in the heart during late pregnancy is almost exclusively due to increased 

utilization of fats 54.  

 There are no studies in humans or animals describing the combined effects of 

obesity and pregnancy on cardiac metabolic function. The present study will directly fill 

that gap. 
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 From Breathing life into the 

lifecourse approach: Pregnancy 

history and cardiovascular disease in 

women, Rich-Edwards et al, 2010 2. 

Figure 2: Overview of cardiac metabolism 

Overview of cardiac metabolism, from Myocardial 

Substrate Metabolism in the Normal and Failing Heart, 

Stanley et al, 2005 1. 

Figure 1: “Pregnancy is a “stress test” that can 

reveal subclinical trajectories and identify new 

opportunities for chronic disease prevention”. 
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CHAPTER 3. METHODS 

3.1 Experimental animals and study design 

All studies using mice were approved by an Institutional Animal Care and Use 

Committee (IACUC) at the University of Kentucky and were conducted in accordance 

with the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory 

Animals.  Female C57BL/6J mice (8 weeks of age; Jackson Laboratory, Bar Harbor, 

ME, stock # 000664) were randomly assigned to receive, ad libitum, either a high fat 

(HF; 60% kcal from fat; D12492, Research Diets, New Brunswick, NJ) or a control low 

fat (LF, 10% kcal from fat; D12450B, Research Diets Inc) diet for 8 weeks (n=30 

mice/diet group) (see Figure 3 for experimental design).  The control LF diet was 

purified and ingredient-matched to the HF diet, and the fat source for both diets was 

soybean oil and lard (where lard comprises the excess fat in the HF diet).  The energy 

densities of the LF and HF diet are 3.82 and 5.21 kcal/g, respectively. Body weight was 

quantified weekly throughout the study using an Ohaus portable digital scale.  

At 8 weeks of diet feeding, all female mice were placed in a cage with male mice 

of the same strain and diet. After 2 days, females were removed from the males, and 

placed in single housing for the duration of the study.  

Echocardiography was performed on LF- and HF-fed female pregnant and non-

pregnant mice 16 days following removal from male cage. The following day, mice were 

anesthetized with ketamine/xylazine (100/10 mg/kg, i.p.) for exsanguination and tissue 

harvest. Fetuses and placentas were dissected and weighed. Tissues were snap frozen in 

liquid nitrogen and stored at -80ºC until analysis. Tissues taken included: heart, liver, 

kidney, spleen, para-uterine fat, and subcutaneous fat.  
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3.2 Echocardiography 

Echocardiography was performed on isoflurane-anesthetized mice as described 

previously 12. Day 16 was chosen, because normal mouse gestation is 20 days or the 

equivalent of the third trimester in humans. Briefly, mice were anesthetized using 2-4% 

isoflurane (at effect) according to their size and then transferred to a heated platform 

(37ºC) with 1-2% isoflurane supplied via nose cone.  Hair on the chest region was 

shaved and removed, and electrode cream was applied on the front and hind limbs before 

being secured with electrical tape to electrodes on the platform.  Respiration rate (RR) 

and heart rate (HR) were monitored and adjusted to a certain range across all mice by 

titrating isoflurane levels.  An RR of 100 times/min and HR of 400 beats/min were 

targeted.  Images of the cross-sectional view of the left ventricle (LV) at the papillary 

muscle-level in parasternal short-axis (PSAX) view were obtained in M-mode using an 

M550 transducer under the cardiology package on a Vevo 3100.  Images were analyzed 

using VevoLab software using LV trace methodology. 

3.3 Tissue RNA extraction and gene expression analysis 

Approximately 20 mg of the left ventricle was used to extract total RNA using the 

Maxwell RSC (Promega, Madison, WI). RNA concentrations and quality were 

determined using a Nanodrop 2000. All samples had a 260/280 and 260/230 ratios > 2.0. 

The NanoString nCounter Metabolic Pathways Panel and nCounter Analysis System 

(NanoString Technologies, Seattle, WA) was used to quantify mRNA abundance of 768 

genes regulating metabolism.  As previously described 12, the Nanostring nCounter gene 

expression system is a multiplexed assay that uses a combination of unique capture 
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probes and color-coded reporter probes to capture and count individual mRNA 

transcripts with high sensitivity and tight correlation to real-time PCR 55. Fifty 

nanograms of RNA of each sample was hybridized to the target-specific capture and 

reporter probes in the CodeSet according to the manufacturer’s instructions. Samples 

were cooled to 4ºC, loaded into nCounter SPRINT cartridges, then analyzed using the 

nCounter Gene Expression Assay.  Raw data were normalized by creating scaling factors 

for the sum of the positive controls and the geometric mean of the four housekeeping 

genes. Data represent the mean of normalized counts. 

3.4 Statistical analysis 

Data are presented as mean ± SEM.  Statistical analyses were performed using 

SigmaPlot version 12.3.  All data passed normality or equal variance tests or logarithmic 

transformation was used to achieve normality. Two-tailed Student’s t-tests were used for 

analysis of data between two groups. For 2-factor analysis, a two-way ANOVA was used 

to analyze end-point measurements with between-group factors of pregnancy and diet, 

followed by Holm-Sidak for post hoc pairwise analyses. Values of P < 0.05 were 

considered to be statistically significant. 
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Figure 3. Experimental Design 
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CHAPTER 4. RESULTS 

4.1 HF-feeding increases body weight and fat mass  

After 8 weeks of diet feeding, HF-fed females had significantly increased body 

weight compared to LF-fed controls (P<0.001; 14A). Within HF-fed mice, the average 

body weight of females who eventually became pregnant was lower than those who did 

not become pregnant, but this was not significant (p=0.06). Further, HF-fed mice had 

increased fat mass and decreased lean mass (as percent body weight), compared to LF-

fed mice P<0.001; Figure 4B). At study endpoint (day 18 of gestation), body weight was 

increased in pregnant compared to non-pregnant animals, independent of diet (P<0.001; 

and HF-fed pregnant mice had increased body weight compared to LF-fed mice (P<0.01, 

Figure 4C). 

4.2 HF-feeding reduces litter size 

Compared to LF-fed dams, HF-fed dams had smaller average litter size (P<0.01), 

and a greater number of resorbed pups (Table 1). There was no difference in pup body 

weight or placental weight in LF- compared to HF dams. 

4.3 HF-feeding increases heart weight and LV mass, but is not augmented with 

pregnancy 

In non-pregnant mice, excised heart weight was greater in HF- fed mice compared 

to LF-fed mice (P<0.001; Table 2). In LF-fed mice, heart weight was increased with 

pregnancy (P<0.05, Table 2), but HF-fed pregnant mice did not have significantly 
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increased heart weight compared to LF pregnant mice. Similarly, LV mass was increased 

with HF-feeding in non-pregnant mice (P<0.05, Figure 5A). However, only LF-fed mice 

exhibited cardiac hypertrophy with pregnancy (P<0.001); LV mass was not augmented 

with pregnancy in HF-fed mice (p=0.221, Figure 5A). 

4.4 Wall thickness is increased in HF-compared to LF-fed pregnant mice 

The increase in LV mass in NP HF-fed mice was associated with increased LV 

posterior wall thickness (P<0.01, Figure 5B). In contrast, increased LV mass with 

pregnancy in LF-fed mice was associated with an increase in the ventricle chamber 

(P<0.001), with no change to the wall thickness, and the diameter of the LV ventricle was 

significantly larger in LF- versus HF-fed pregnant mice (P<0.05). Thus, the relative wall 

thickness, a measure of LV geometry, was significantly increased in HF- compared to 

LF-fed mice during pregnancy (P<0.05, Figure 5B). Data summarizing cardiac 

morphology depicted in a schematic in Figure 5C. 

4.5 Analysis of genes regulating metabolism in hearts  

To determine the gene profile associated with changes in the cardiac structure of 

HF- versus LF-fed pregnant mice, we quantified mRNA abundance of 794 genes 

regulating metabolism involved in 34 pathways using NanoString nCounter gene 

expression analysis in the left ventricles of LF- and HF-fed pregnant and non-pregnant 

mice. Using 2-way ANOVA with pairwise comparisons, we determined that there were 

47 genes with a significant effect of either gene or pregnancy with P<0.01. Using a p-

value <0.05, there were 26 genes with a significant effect of diet, 35 with a significant 
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effect of pregnancy, and 16 with a significant interaction between diet and pregnancy 

(Figure 6).  

Since the largest number of genes with significance differences were related to 

fatty acid utilization, we focused our analysis on these genes. These genes are: Acaa2, 

Acadl, Acox1, Cpt1b, Fabp3, and Ehhadh.  For Fabp3, there was an overall effect of diet 

to increase the abundance of cardiac mRNA, but no effect of pregnancy (P<0.01, Figure 

7F). Similarly, Acaa2, Acadl, Acox1, and Cpt1b were upregulated with HF-feeding 

(P<0.05, Figure 7A-D). There was also a significant of pregnancy, but this was only 

significant in the LF-fed group (P<0.05). Meaning, gene expression of these genes was 

increased in HF-fed mice (pregnant or non-pregnant), and increased in LF-fed pregnant 

mice, but there was no additional effect of pregnancy to increase gene expression in HF-

fed pregnant mice. The expression pattern of Ehhadh was different, where Ehhadh was 

elevated only in the LF-fed pregnant mice (P<0.01, Figure 7E). Further, the expression 

level of Ehhadh in HF-fed pregnant mice was significantly lower than that of LF-fed 

pregnant mice (P<0.05).  
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Table 1: Litter size and pup/placental weights from LF- or HF-fed pregnant female mice. 

  

Diet Pups per 

litter 

Pup weight 

(g) 

Total number 

of resorbed 

pups 

Number of 

dams with 

resorbed pups 

Placenta weight 

(g) 

LF 8.6 + 0.3 1.01 + 0.11 4 4 0.111 + 0.005 

HF 6.4 + 0.5** 0.93 + 0.11 21 10 0.111 + 0.005 

**, P<0.01 effect of diet 

 

 

 

 

Table 2: Heart weights of LF- and HF-fed pregnant and non-pregnant female mice. 

 

***, P<0.001 effect of diet 
###, P<0.001 effect of pregnancy 
#, P<0.05 effect of pregnancy 

 

 

 

 

 

  

Parameter 
LF HF 

NP (n=20) P (n=10) NP (n=18) P (n=12) 

Mean + SEM 

Heart weight (g) 0.118 + 0.003 0.128 + 

0.004# 

0.132 + 

0.003*** 

0.136 + 0.004 

Heart/body 

weight (%) 

0.529 + 0.012 0.374 + 

0.017### 

0.412 + 

0.013*** 

0.348 + 

0.016### 
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Figure 4: Weight gain from baseline to gestational day 19 

A) Body weight and (B) lean and fat mass of mice fed a LF or HF diet for 8 weeks 

(before pregnancy). (C) Body weight of LF- and HF-fed pregnant (gestational day 

19) and non-pregnant mice at study endpoint. Data are mean + SEM in n=10-20 mice 

per group. *, P<0.001 effect of diet; #, P<0.001 effect of pregnancy by 2-way 

ANOVA.  
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Figure 5: LV mass and RWT 

A) LV mass and (B) relative wall thickness (RTW; 2 * posterior wall 

thickness divided by LV diastolic diameter) in pregnant (P) and (NP) 

female mice fed a low-fat (LF) or high-fat (HF) diet. Data are mean + SEM 

from n=20 LF NP, n=10 LF P, n=18 HF NP, and n=12 HF P. *, P<0.05 

compared to LF; #, P<0.05 compared to NP analyzed by 2-way ANOVA 

followed by Holm-Sidak pairwise analysis. (C) Schematic representation 

depicting changes in LV chamber and wall thickness in response to diet 

and pregnancy. Notably, LV chamber diameter is increased with pregnancy 

in LF-fed mice; in contrast, HF-fed mice exhibit increased RWT with 

pregnancy compared to LF-fed mice. 
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794 genes

overall 

p-value<0.01 

47 genes

Diet effect

pval<0.05

26 genes

Group effect 

pval<0.05

35 genes

Group*Diet effect

pval<0.05

16 genes

overall 

p-value>0.01

747 genes

 Figure 6: Flow chart of cardiac genes measured using Nanostring 

significantly changed using 2-way ANOVA by either diet or pregnancy. 
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Data are expressed as counts of mRNA transcripts, normalized to the geometric mean of counts 

of four housekeeping genes.  Data are mean + SEM from n= 8 (LF NP), n=9 (LF P), n=9 (HF NP), 

and n=10 (HF, P).  *, P<0.05 effect of diet; **, P<0.001 effect of diet; #, P<0.05 effect of 

pregnancy, ##, P<0.01 effect of pregnancy by 2-way ANOVA followed by Holm-Sidak pairwise 

analysis. 

Figure 7:  mRNA abundance of fatty acid utilization genes in pregnant and non-pregnant mice fed a 

LF or HF diet. 
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CHAPTER 5. DISCUSSION 

The present study examined the effects of obesity on cardiac hypertrophy of 

pregnancy in mice by quantifying left ventricular (LV) mass and the expression of genes 

that regulate metabolism in the hearts of pregnant obese versus lean mice. The major 

findings of this study are (1) HF-feeding increased body weight and fat mass in pregnant 

compared to non-pregnant controls, independent of diet, (2) HF-fed dams had smaller 

average litter sizes and a greater number of reabsorbed pups compared to LF-fed dams, 

(3) LF-fed mice exhibited cardiac hypertrophy in response to pregnancy; while LV mass 

was increased with HF-feeding, it was not further augmented with pregnancy, (4), 

relative wall thickness was decreased with pregnancy in LF-fed dams, and HF-fed dams 

had increased wall thickness compared to LF-fed dams, and (5) cardiac fatty acid 

utilization is increased with HF-feeding and with pregnancy, but HF- compared to LF-

fed pregnant mice had decreased expression of Ehhadh, a gene responsible for producing 

medium-chain fatty acids (MCFA). These results indicate that obesity during pregnancy 

promotes adverse cardiac remodeling and may impair oxidation of MCFA.  

This research project addresses the important concept that cardiovascular health 

during pregnancy may have a profound impact on lifetime maternal cardiovascular risk. 

We previously demonstrated that mice given a HF diet during pregnancy had augmented 

cardiac hypertrophy postpartum, suggesting that obesity during pregnancy is associated 

with elevated risk for CVD 12. Mechanisms for obesity-mediated cardiac dysfunction are 

not known.  
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Obesity and dyslipidemia are risk factors for cardiac hypertrophy, a predictor of 

adverse outcomes 56. Pregnancy, a condition of rapid weight gain and elevated serum 

lipid status, also induces cardiac hypertrophy, but this is not associated with CVD. We 

demonstrated that mice fed a LF diet during pregnancy exhibited cardiac hypertrophy. 

Similar to existing literature in humans 9 and rodents 10, this was associated with a 

change in cardiac geometry, where the ventricle chamber was larger and the cardiac wall 

thinner compared to LF non-pregnant mice. This reduction in relative wall thickness 

(RWT) is termed “eccentric” remodeling. In contrast, HF-fed pregnant mice did not 

exhibit an increase in LV mass compared to HF-fed nonpregnant mice. Further, HF-fed 

pregnant mice exhibited increased RWT (termed “concentric” remodeling) compared to 

LF-fed pregnant mice. Increased RWT and concentric remodeling, is an indicator of 

impaired cardiac function 16. These data suggest that HF-feeding during pregnancy 

promotes adverse cardiac remodeling.  

Aberrant cardiac metabolism is a hallmark of disease in patients with heart failure 

and diabetes mellitus; the pattern of substrate utilization under these conditions is 

different compared to a healthy heart. Similarly, cardiac metabolism is altered under 

conditions of physiologic hypertrophy. The Burmese python is an animal model of 

extreme metabolism. Consumption of a large meal in these infrequent eaters induces a 

robust and striking metabolic posprandial shift. Studies by Leinwand et al reveal that the 

python heart grows in mass by an astonishing 40% 2-3 days following a large meal, and 

that this is physiological, not pathological, cardiac hypertrophy 57. The researchers 

determined that cardiac metabolism following a meal was associated with markedly 

increased fatty acid utilization pathways, and that a composition of fatty acids in python 
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plasma promotes physiological cardiac growth. We likened this concept to physiologic 

cardiac hypertrophy during pregnancy, and wondered if changes in cardiac fatty acid 

utilization during pregnancy could have a protective effect against pathological cardiac 

growth.  

Consistent with studies in ob/ob mice, a mouse model of genetic obesity, we 

report that HF-feeding increases expression of genes regulating fatty acid transport into 

the mitochondria (Fabp3, Cpt1b) and fatty acid β-oxidation (Acaa2, Acadl, Acox1). With 

the exception of Fabp3, these genes were increased with pregnancy in LF-fed mice. 

These data indicate that both pregnancy and obesity promote increased fatty acid 

utilization as a substrate in the heart, with obesity having the larger influence. However, 

these effects were not additive in the HF-fed pregnant mice; the mRNA count of these 

genes in HF-fed pregnant mice were roughly equivalent to those in the HF-fed 

nonpregnant mice. This suggests that obesity may “max out” fatty acid utilization 

through upregulation of transporters and oxidation of long- and very long-chain fatty 

acids. In contrast, there was one gene, Ehhadh, that did not follow this trend. This gene 

was not upregulated with HF-feeding, but was significantly upregulated with pregnancy. 

Notably, the expression level in the HF- pregnant mice was significantly reduced 

compared to that of the LF-pregnant mice. This suggests an important role for this gene 

in cardiac metabolism of pregnancy that was impaired with obesity. We wondered if 

there could be a relationship between function of Ehhadh and cardiac hypertrophy, and if 

reduction of Ehhadh could be associated with the adverse cardiac remodeling (i.e. 

thickened wall thickness) observed in the HF-fed pregnant mice.  
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Ehhadh encodes a protein that is part of the classical peroxisomal fatty acid β-

oxidation pathway, with an essential role in the production of medium-chain dicarboxylic 

acids (MCDA) 58. The purpose of MCDA production in cardiac metabolism is not 

known. Medium chain fatty acids (MCFA) serve as a rapid energy source because they 

are metabolized quickly, and it can be speculated that MCFA are an important substrate 

for the heart during pregnancy, when the heart’s energy needs are dramatically increased. 

Literature reports that supplemental MCFA into the diet can improve weight loss and 

energy expenditure, since MCFA are preferentially utilized as fuel (versus storage in 

adipose tissue) 16. Studies in pregnant rats demonstrate that supplementation with 

MCFA, compared to LCFA, into the diet during pregnancy prevented obesity and 

improved lipid metabolism of offspring who were given a HF diet 59. Thus, MCFAs have 

a beneficial effect on metabolism and health status.  

Data from limited studies suggest a positive effect of MCFA on heart function in 

pathological conditions. Supplementation of MCFA improved cardiac function in rats 

under conditions where oxidation of fatty acids was impaired 60. Further, MCT 

supplementation in the diets of rats with left ventricular hypertrophy reduced 

hypertrophy and cardiac oxidative stress 61 62. This is an important piece of evidence, as 

it links MCFA supplementation with reversal of adverse cardiac remodeling. There are 

no studies of MCT supplementation on the heart in pregnancy. However, findings from 

our current study extend those of published literature by suggesting that production of 

MCFA is associated with normal cardiac hypertrophy of pregnancy. Taken together with 

the findings from python hearts that certain FA are protective in the face of extreme 

physiologic hypertrophy, our study describes a potential mechanism by which obesity 
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during pregnancy impairs a cardiac fatty acid oxidation pathway normally associated 

with healthy pregnancy.  

In addition to aberrant cardiac hypertrophy of pregnancy, we observed other 

adverse effects of high fat feeding in pregnant mice. HF-fed mice had smaller litter sizes 

and more resorbed pups compared to LF counterparts. The last point was particularly 

evident during our experiment. Only 4 out of 10 pregnant LF mice had a fetal resorption, 

and we observed only 1 resorption per dam. In striking contrast, 10 of 12 HF dams had 

resorptions, and multiple resorbed fetuses were evident in many dams. We observed 21 

versus only 4 total resorptions in HF versus LF mice. This is consistent with studies in 

humans demonstrating overweight women are more likely to have a higher incidence of 

infertility, miscarriage, and pregnancy complications 63. For example, the rate of 

miscarriage in obese women is 38.1% compared to 13.3% in with normal BMI 64 . 

Further, Lo et al reported that as many as 78% of recurrent miscarriages are associated 

with obesity 65. Taken with findings from our study, obese pregnancies carry a higher 

risk of pregnancy complications, adverse impacts on fetal development, and higher rate 

of miscarriage. 

5.1 Limitations and Future Studies 

There were several limitations to our study and to our data analysis. We did not 

characterize the cellular composition of the cardiac wall in the LF vs HF animals. 

Although increased RWT is nearly always associated with pathology, that was not 

confirmed in our study. Future studies will stain sections of the LV for fibrosis, which is 

a hallmark of adverse cardiac remodeling. In addition, we focused our gene analysis only 
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on fatty acid utilization. There were other genes pathways that were significantly altered, 

including genes regulating amino acid metabolism, glycolysis, and mitochondrial 

respiration. Impairment of these pathways are demonstrated in the literature as impaired 

with cardiac dysfunction. Future studies will consider interaction of multiple metabolic 

pathways together with fatty acid utilization as contributors to the observed pathology in 

the HF-fed pregnant mice.  

Further, our analysis of genes regulating fatty acid utilization was global, and we 

did not assess other genes outside of the Nanostring CodeSet regulating MCFA 

oxidation. Nor did we measure fatty acid components in serum or cardiac tissue extracts. 

Findings from our study generated the hypothesis that production of MCFA has a 

protective effect on cardiac hypertrophy in pregnant mice fed a HF diet. To test this 

hypothesis, future studies might supplement the HF diet with a source of MFCA, such as 

coconut oil to see if this prevents adverse remodeling during obese pregnancy.  

5.2 Public Health/Clinical Significance  

Over two-thirds of the reproductive age women in the US are obese. Adverse 

cardiac effects during pregnancy may contribute to increased risk for CVD postpartum. 

Therapeutics to protect heart function during pregnancy are needed. Our results indicate 

that MCFA may have a protective effect on cardiac adaptation during pregnancy, which 

is impaired in obesity. Therefore, MCFA supplementation in the diet during pregnancy 

may be a preventative therapeutic to protect the heart in women with obesity. However, 

more research is needed to determine the fatty acid profile of hearts during pregnancy, 

and whether supplementation with MCFA is safe. In the meantime, women who are 
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obese during pregnancy should focus on consuming a well-balanced diet containing 

adequate lean protein sources, a variety of plant-based fats, and plenty of fresh fruits and 

vegetables. Additionally, the inclusion of more long chain fatty acids, such as poly-

unsaturated (PUFA) and mono-unsaturated fats (MUFAs), which include 

docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) should be consumed to 

meet linolenic acid (𝜔-6; LA) and alpha linolenic acid (𝜔-3; ALA) requirements (LA – 

11-13g/day and ALA –1.1-1.4g/day for women ages 14 – 70 years old). 66 67 All of 

which play an important role in human health and fetal development, such as reducing 

cardiovascular disease, inflammatory responses, and brain development. 68 69 Sources of 

these essential fatty acids should be consumed from natural food sources (flax seed, chia 

seed, walnuts, fatty fish, seaweeds, etc.) and through a dietary supplement (i.e. DHA for 

vegetarians/vegans). 
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CHAPTER 6. CONCLUSION 

In conclusion, these results demonstrate that obesity during pregnancy did not 

promote altered cardiac hypertrophy, however it did promote adverse cardiac remodeling 

in mice. While LV mass was increased with HF-feeding, there was not further 

augmentation with pregnancy. In contrast, HF-fed dams had increased wall thickness 

compared to LF-dams. Furthermore, the results also demonstrated that obesity during 

pregnancy decreases the expression of Ehhadh – a gene responsible for producing 

medium chain fatty acids in cardiac tissues in mice. Suggesting that the combined effects 

of pregnancy and obesity promote adverse remodeling and altered fatty acid utilization in 

the heart. The clinical significance of this study is that this study provides more evidence 

towards the effects of obesity during pregnancy modulating cardiac hypertrophy and 

altered metabolism. 
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